1. Sets :
2. Some Standard Notations for Some Special Sets :
3. Representation of Sets : There are two methods to represent a set
(i). Roster or Tabular form or Enumeration Method :
(ii). Set builder form or Rule Property method :
4. Types of Sets :
(i). Empty Set or Null Set or Void Set :
Note :
(ii). Singleton Set :
(iii). Pair Set or Doubleton Set :
(iv). Finite Set :
(v). Cardinal Number of a Finite Set :
(vi). Infinite Set :
(vii). Equivalent Sets :
(viii). Equal Sets :
(ix). Set of Sets :
(x). Super Set :
(xi). Subsets :
(xii). Proper Subset :
Note :
(xiii). Power Set :
(xiv). Universal Set :
5. Venn Diagrams :
6. Operation of Sets :
(i). Union of two Sets :
Venn Diagram of A∪B :
(ii). Intersection of two Sets :
Venn Diagram of A ∩ B :
(iii). Difference of Sets :
Venn Diagram of A – B :
(iv). Symmetric Difference of two Sets :
Venn Diagram of A Δ B :
(v). Complement of a Set :
Venn Diagram of Al
7. Some Important Laws of Sets :
(i). Idempotent Laws : For any set A.
(ii). Identity Laws : For any set A.
(iii). Commutative Laws : For any two sets A and B.
(iv). Associative Laws : For any three sets A and B.
(v). Distributive Laws :
(vi). De – Morgan’s Law : For any two sets A and B.
8. Some Important Theorems :
9. Formula for Sets :
Click here to pdf download |