How to Proof Compound Angle Formula

Compound Angle Formula : Algebraic sum of two or more angles is called compound angle.

If A, B and C are any angle then A + B , A + B + C, A – B + C, A + B – C, A – B – C, A – B ………..etc are all compound angles.

Addition of Compound Angle Formula : 

  1. Sin (A + B) = SinA.CosB + CosA.SinB
  2. Sin (A + B) = SinA.CosB + CosA.SinB
  3. Tan (A + B) = TanA + TanB/ 1 – TanA.TanB

How to Proof Compound Angle Formula

Let the revolving line starting from the position ox with angle A and again revolving in same direction with angle B.

∴  Xoy = A  and Xoy = B  then XOZ = A + B                                 Let Q be a any point on oz.

Draw QM ⊥ OX   and QP ⊥ OY from point Q.    Draw PH ⊥ QM from Point P

Now  HPO  =   POX =  A                            HPO = 90o

HPO  = 90o – A                                             ∴ HQP = A

In Δ QOM 

Subtraction of Compound Angle Formula : 

  1. Sin (A – B) = SinA.CosB – CosA.SinB
  2. Sin (A – B) = SinA.CosB – CosA.SinB
  3. Tan (A – B) = TanA – TanB/ 1 + TanA.TanB

Let the revolving line starting from the position ox with angle A and again revolving in opposite direction with angle B.

∴  Xoy = A  and Xoy = B  then XOZ = A – B                                 Let Q be a any point on oz.

Draw QM ⊥ OX   and QP ⊥ OY from point Q.    Draw PH ⊥ QM from Point P.

Now  YPH  =   POX =  A                            QPY = 90o

QPH  = 90o – A                                             ∴ HQP = A

In Δ QOM 

Compound Angle Formula : 

Leave a Comment